

Skill description: Rearranging equations that involve multiple fractional terms.

Essential Revision

EQUATIONS

At this level, you will be rearranging equations sourced from mathematics and science.

Equation	Explanation
$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	Angles and lengths of sides of a triangle.
$\frac{\sin i}{\sin r} = \frac{v_1}{v_2}$	Physics – refraction of light.
$\frac{V_p}{V_s} = \frac{n_p}{n_s}$	Physics – transformers.
$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$	Chemistry – Combined Gas Law.

Some of these equations include trigonometric ratios. At this level, we will only isolate the trigonometric ratio, e.g. $(\sin i)$, and leave solving the ratio to determine the angle until later.

 \circledast Super 12s Visit super12s.com for copyright details.

Visit super12s.com for more than 200 Algebra booklets just like this one!

STRATEGIES TO SOLVE THE PROBLEMS

When rearranging equations, the goal is to:

Isolate the desired variable (unknown) to one side of the equal sign.

~~~~~~

We will see over the next few levels that we follow the order:

- First: isolate the term that contains the desired variable (unknown).
- Second: isolate the desired variable (unknown).

#### Example 1

Rearrange the equation to make  $\sin r$  the subject.

$$\frac{\sin i}{\sin r} = \frac{v_1}{v_2}$$

#### Step 1

As  $\sin r$  is a denominator we need to multiply both sides of the equation by  $\sin r$ .

$$\frac{\sin i}{\sin r} = \frac{v_1}{v_2}$$
$$\times (\sin r) = \times (\sin r)$$
$$\sin i = \frac{v_1 \sin r}{v_2}$$

 $\odot$  Super 12s Visit super12s.com for copyright details.

Visit super12s.com for more than 200 Algebra booklets just like this one!

Step 2

To isolate  $\sin r$  multiply both sides of the equation by  $v_2$ .







© Super 12s Visit super12s.com for copyright details.

Visit super12s.com for more than 200 Algebra booklets just like this one!









## Solutions to Essential Revision

| 1.         | <i>r</i> = 8          | 2.  | $h = \lambda p$    |
|------------|-----------------------|-----|--------------------|
| 3.         | p = n - r             | 4.  | $h = \frac{2A}{b}$ |
| 5.         | p = 15                | 6.  | $v = \frac{m}{d}$  |
| 7.         | $W = \frac{P}{2} - L$ | 8.  | $A = \frac{3V}{h}$ |
| <u></u> 9. | <i>x</i> = 7          | 10. | $A = \frac{V}{h}$  |
| §11.       | f = 2 - v + e         | 12. | $R = \frac{I}{PT}$ |

### Solutions to Questions

| $1.  \sin A = \frac{a \sin B}{b}$                          | 2. $v_1 = \frac{v_2 \sin i}{\sin r}$    |
|------------------------------------------------------------|-----------------------------------------|
| $\begin{cases} 3.  V_p = \frac{n_p  V_s}{n_s} \end{cases}$ | 4. $V_1 = \frac{T_1 P_2 V_2}{P_1 T_2}$  |
| 5. $a = \frac{b \sin A}{\sin B}$                           | $6.  v_2 = \frac{v_1 \sin r}{\sin i}$   |
| $\begin{cases} 7.  V_s = \frac{V_p n_s}{n_p} \end{cases}$  | 8. $T_1 = \frac{P_1 V_1 T_2}{P_2 V_2}$  |
| 9. $\sin B = \frac{b \sin A}{a}$                           | $10.  \sin r = \frac{v_2 \sin i}{v_1}$  |
| $\begin{cases} 11.  n_s = \frac{n_p V_s}{V_p} \end{cases}$ | 12. $P_2 = \frac{P_1 V_1 T_2}{T_1 V_2}$ |

 $\odot$  Super 12s Visit super12s.com for copyright details.

Visit super12s.com for more than 200 Algebra booklets just like this one!